Skip to main content
 

Archive

Pedal Power

[vc_row][vc_column][vc_column_text css=".vc_custom_1713288782328{padding-bottom: 20px !important;}"]Generate electricity yourself to power three different lightbulbs and feel the difference in energy efficiency![/vc_column_text][vc_column_text css=".vc_custom_1713289456882{padding-bottom: 20px !important;}"]The Interactive Light Bulb Power Comparison Box designed by Pedal Power Generator is an engaging way to teach a variety of energy concepts from the conversion of energy (mechanical to electrical to light and/or heat), what efficiency means in terms of energy usage, how different light bulbs work, how innovation can lead to significant impacts on the climate, and how people can make immediate impacts in their own life by switching to more energy efficient technologies. A hand-crank is attached to a motor that...

Electromagnets & Motors

By Alan Zahn Overview: This lesson describes how to make simple electromagnets and a motor that is powered by a solar panel. Essential Question: How can electricity be used to cause magnetism? Background: A magnet is an object that produces a magnetic field. We are already familiar with certain types of magnetic fields such as the Earth’s magnetic field that a compass uses to point north, or refrigerator magnets that use magnetic fields to stick. Magnets have uses beyond being interesting toys and sticking things on metal, and one of the most widespread uses of magnets in industry is in electric motors. In electric motors, the magnet is used to...

Nanocrystalline Dye Solar Cell

[vc_row][vc_column][vc_column_text] Overview: Students create a dye sensitized solar cell that can generate a small current using nanocrystalline TiO2 and berry juice. Essential Question: How can we make a device which captures solar energy to produce electricity? Background: [caption id="attachment_10755" align="alignright" width="300"] A finished cell is held together with clips.[/caption] This dye-sensitized solar cell, also known as a Grätzel cell, uses a thin film of titanium dioxide which has been ground to a fine powder (nanocrystalline) to increase its reactive surface area. The TiO2 is sandwiched between two glass slides that are coated with conductive and transparent indium tin oxide (ITO). The TiO2 is impregnated with some kind of colored dye, in this...

Solar Tracker Arduino Project

  Overview: This device keeps a flat panel holding a solar cell continuously following the sun as it moves across the sky. The Arduino uses 2 light dependent resistors (LDRs) that are separated by a fin to compare the light levels on either side and then rotate the servo attached to the panel towards the more illuminated LDR until the two detectors are equal. This is a nice Arduino project which combines sensors with servos, with logic that can be tuned, and has a practical application relating to clean energy. Background: Solar panels generate the most electricity when the incoming light is perpendicular to the panel. A...

Solar Energy Data Exploration

Overview: Students examine patterns in direct and diffuse radiation. Students compare generation from the solar panels to the absolute insolation. Students perform a cost benefit analysis for a home energy system Investigations with Solar Data lesson Essential Question How can we precisely measure the amount of solar radiation that is available for solar generation? NGSS Standards: Standard Number Standard text 4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. HS-ESS2-4 Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. HS-PS4-5. Communicate technical information about how some technological devices use the...

Photovoltaic Characterization Lab

  Overview In this lab you will measure the current versus voltage for several photovoltaic cells using computer probeware.  The cells are tested under varying resistance loads and varying light levels. Essential Question How can you compare the efficiency of two solar cells and determine the peak power? Background Solar cells produce different voltages and currents depending on the light levels and resistance in the circuit. How can you tell what the peak power of solar cell is? This is the method that researcher use to measure and compare the power from various solar cells. It uses a simple technique with computer probeware to measure the current/voltage curve of a...

Phosphorescent Decay

  Overview: In this activity you will measure the phosphorescence over time  of a glow-in-the-dark paint following excitation by a flash of light. Then the data is transferred to Excel to find the best fit curve and its equation. This provides an insight into reaction order and methods for studying emissive processes. phosphorescent decay lesson Essential Question: What reaction order do you predict the phosphorescent emission from glow in the dark paper will follow? What affect will temperature have on the phosphorescent decay pattern? Background: Fluorescence vs Phosphorescence Many materials exhibit fluorescence when they are excited by a sufficiently energetic light source. In an excited material a population of electrons and holes is...

Nanoimprinting

How to Replicate the grating structure from old DVD using nanoimprint and it’s application in improving solar cell efficiency. By Chen Zou Electrical Engineering Overview: In this demonstration lab students replicate a nano-scale grating structure from old DVD using nanoimprinting. They explore the technique could be used in improving solar cell efficiency. Essential Question How can we mass produce materials with nano-scale features using imprinting technique? Background: [caption id="" align="alignright" width="170"] Pits on CD-ROM and DVD[/caption] Small features on the surface of materials can create a variety of useful properties. Repeated small pit or lines on the scale of 10-100 nm cause some interesting effects with light. The rainbow color of...

Mathematics of Porous Materials

Nanotechnology provides new ways to make novel materials. Surface area is a key feature of devices that utilize chemical reactions. Mathematics gives us a way to analyze the surface to volume ratio. Watch this video to see how the same amount of material can be processed to create an extremely high surface area. This is useful for constructing high capacity battery electrodes. Download Powerpoint version of above presentation Photograph by Alexander Kozen, ANSLab University of Maryland Porous Materials for CEI Revision 3 Challenge: See if you can create a spreadsheet that models the effect of decreasing particle size on surface to volume ratio for a bulk material.  (hint: calculate the...

Luminescent Solar Concentrator

[vc_row][vc_column][vc_column_text] Overview: This maker project demonstrates how fluorescent materials can be used to make a new kind of solar panel. [caption id="attachment_5066" align="alignright" width="276"] A model luminescent solar concentrator.[/caption] Essential Question: Can we make a device that collects diffuse radiation and concentrates it for electrical generation? Background: A luminescent solar concentrator (LSC) is a transparent piece of plastic or glass that has a fluorescent dye or quantum dots embedded or painted on it. The dye absorbs light and then fluoresces creating a glow that propagates by total internal reflection to the edge of the sheet where the light is absorbed by a narrow solar cell. This is a promising technology because...

Modeling Solar Grid Integration with Math

Overview The purpose of this lesson is to introduce the students to the challenges of integrating solar energy to the electricity grid with the use of numerical simulations. More specifically, it is meant to shed light on the advantages (mentioned in the introduction of this document) and on the challenges (challenges 1 and 2 from the introduction) of solar energy. Solar Integration Lesson Essential Question: How can we optimize energy prices by controlling load and production? NGSS Standards: Standard Number Standard text HS-ETS-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. HS-ETS-2 Design a solution to a complex real-world problem by...

Absorption and Fluorescence with USB Spectrometer

[vc_row][vc_column][vc_column_text] Overview: [caption id="attachment_4862" align="alignright" width="297"] A USB spectrometer measures light that passes through a solution in the cuvette.[/caption] Students explore how different materials absorb and emit light, then measure spectra with a desktop spectrometer. Essential Question: How do we measure the absorption and emission of light? Background: Light travels from here to there like a really fast bullet. When we see a light turn on, there are particles of light called photons that travel from the lamp to your eye. Light goes so fast that in one second, light travels 180,000 miles! That's traveling across the US 72 times in one second!  All light is made of photons, when a...