Skip to main content
 

Archive

Electromagnets & Motors

By Alan Zahn Overview: This lesson describes how to make simple electromagnets and a motor that is powered by a solar panel. Essential Question: How can electricity be used to cause magnetism? Background: A magnet is an object that produces a magnetic field. We are already familiar with certain types of magnetic fields such as the Earth’s magnetic field that a compass uses to point north, or refrigerator magnets that use magnetic fields to stick. Magnets have uses beyond being interesting toys and sticking things on metal, and one of the most widespread uses of magnets in industry is in electric motors. In electric motors, the magnet is used to...

Solar Energy Data Exploration

Overview: Students examine patterns in direct and diffuse radiation. Students compare generation from the solar panels to the absolute insolation. Students perform a cost benefit analysis for a home energy system Investigations with Solar Data lesson Essential Question How can we precisely measure the amount of solar radiation that is available for solar generation? NGSS Standards: Standard Number Standard text 4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. HS-ESS2-4 Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. HS-PS4-5. Communicate technical information about how some technological devices use the...

Solar Circuits

[vc_row][vc_column][mkd_section_title title="Solar Circuits" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Students can learn a lot about solar cells by playing around with simple circuits. You can build your own solar exploration kit with inexpensive materials purchased online. After you collect your materials keep them together in a box (Solar Circuits Lesson)[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18214" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]Is it possible to build an affordable solar exploration kit at home?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]The most common photovoltaic is the silicon solar cell.  A single cell has a dark blue front side with a grid of thin current collecting wires and solid conductive back. A single...

Print a Solar Car

[vc_row][vc_column][mkd_section_title title="Print a Solar Car" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Student use their makerspace tools to build a solar car chassis.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18215" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can we use 3D printing to make an experimental solar car?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]One of the most popular classroom activities conducted by The Clean Energy Ambassadors has been the solar car derby. Student experiment with different arrangements of solar panels on different car chassis. By the end of a busy event we found our cars were often wrecked. Motors broke loose, leads ripped from motors, and clip leads lost. Also we found students...

Polymers

[vc_row][vc_column][mkd_section_title title="Polymers" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]By Monica Esopi The intention of this lesson is to learn background about polymer materials and their applications, and to explore these materials through hands-on activities (making slime and bouncy balls). Students will be able to make their own polymers and explore their properties. These activities can be done individually, or in pairs or groups. Students will make slime to explore cross-linking, and then make bouncy balls to see the impact of a thickening agent.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18213" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can simple molecules be joined together in chains or networks to make a substance with different...

Solar Car Derby

[vc_row][vc_column][mkd_section_title title="Solar Car Derby" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Students design and assemble model solar cars and race them on a track.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18287" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]What design makes the fastest solar car?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]A solar car captures solar energy with solar cells, converts the energy to electricity that powers electric motors. In a large scale it’s very difficult to capture enough energy from the roof of a car to power a vehicle. One example is the 3000 km World Solar Challenge in Australia in which 1000 Watt solar panels power very light efficient vehicles with minimal battery...

Renewable City

[vc_row][vc_column][mkd_section_title title="Sustainable Town Model" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]This free-form activity challenges elementary students to create a physical model of a sustainable town that includes energy production from renewable sources, energy storage and distribution in a grid. Students can use printed cut and fold templates for common structures or build their own from scratch.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18252" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]What does it take to make your town sustainable?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]Some define sustainability as development that meets the needs of the present without compromising the ability of future generations to meet their own needs. Often this includes the use...

Draw a Circuit: Fun with Graphite

[vc_row][vc_column][vc_column_text css=".vc_custom_1713215921953{padding-bottom: 20px !important;}"]Students explore the conductive properties of graphite and graphene as they create simple circuits.[/vc_column_text][mkd_accordion style="boxed_toggle"][mkd_accordion_tab icon_pack="" title="Question"][vc_column_text]Can thin layers of graphite conduct electricity?[/vc_column_text][/mkd_accordion_tab][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]What we call “pencil lead” is actually a substance called graphite, which consists of many stacked sheets of carbon atoms. Like a metal, graphite is conductive and therefore can act like a wire on paper to create the circuit. Each sheet of carbon atoms is bonded in honeycomb structure and the single layers are known as graphene (see picture on front page or toy model; also if available, look under microscope at a real graphene flake!). These...

Absorption and Fluorescence with USB Spectrometer

[vc_row][vc_column][vc_column_text] Overview: [caption id="attachment_4862" align="alignright" width="297"] A USB spectrometer measures light that passes through a solution in the cuvette.[/caption] Students explore how different materials absorb and emit light, then measure spectra with a desktop spectrometer. Essential Question: How do we measure the absorption and emission of light? Background: Light travels from here to there like a really fast bullet. When we see a light turn on, there are particles of light called photons that travel from the lamp to your eye. Light goes so fast that in one second, light travels 180,000 miles! That's traveling across the US 72 times in one second!  All light is made of photons, when a...

Two students hold their solar spinners - solar panels glued to petri dish lids - underneath a high-intensity lamp.

Solar Spinner

[vc_row][vc_column][vc_column_text]Build a device from a solar cell, motor and petri dish. It demonstrates conversion of solar energy to electricity and then to mechanical energy.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18217" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How do we build a toy that uses solar energy to make it spin?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]The front of the solar cell is connected to one wire of the motor, and the back is connected to the other. This makes a complete circuit. It is very important not to let the leads that come from the top of cell to touch the tape coming from the bottom of the cell...

Glowing Colors

[vc_row][vc_column][vc_column_text]Students explore how different materials absorb and emit light of different colors[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18248" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can materials make light of different colors?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]White light is composed of lights of different colors. Each color is carried by a light moving as a wave. Different materials reflect light of different colors, or they absorb light of other colors. If an object appears red, it because all the other colors besides red are absorbed and only red light is reflected. Some materials create light when they are energized by light, electricity, heat or by chemical reactions. This...