Nanocrystalline Dye Solar Cell
[vc_row][vc_column][vc_column_text] Overview: Students create a dye sensitized solar cell that can generate a small current using nanocrystalline TiO2 and berry juice. Essential Question: How can we make a device which captures solar energy to produce electricity? Background: [caption id="attachment_10755" align="alignright" width="300"] A finished cell is held together with clips.[/caption] This dye-sensitized solar cell, also known as a Grätzel cell, uses a thin film of titanium dioxide which has been ground to a fine powder (nanocrystalline) to increase its reactive surface area. The TiO2 is sandwiched between two glass slides that are coated with conductive and transparent indium tin oxide (ITO). The TiO2 is impregnated with some kind of colored dye, in this...
Solar Tracker Arduino Project
Overview: This device keeps a flat panel holding a solar cell continuously following the sun as it moves across the sky. The Arduino uses 2 light dependent resistors (LDRs) that are separated by a fin to compare the light levels on either side and then rotate the servo attached to the panel towards the more illuminated LDR until the two detectors are equal. This is a nice Arduino project which combines sensors with servos, with logic that can be tuned, and has a practical application relating to clean energy. Background: Solar panels generate the most electricity when the incoming light is perpendicular to the panel. A...
Solar Energy Data Exploration
Overview: Students examine patterns in direct and diffuse radiation. Students compare generation from the solar panels to the absolute insolation. Students perform a cost benefit analysis for a home energy system Investigations with Solar Data lesson Essential Question How can we precisely measure the amount of solar radiation that is available for solar generation? NGSS Standards: Standard Number Standard text 4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. HS-ESS2-4 Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. HS-PS4-5. Communicate technical information about how some technological devices use the...
Photovoltaic Characterization Lab
Overview In this lab you will measure the current versus voltage for several photovoltaic cells using computer probeware. The cells are tested under varying resistance loads and varying light levels. Essential Question How can you compare the efficiency of two solar cells and determine the peak power? Background Solar cells produce different voltages and currents depending on the light levels and resistance in the circuit. How can you tell what the peak power of solar cell is? This is the method that researcher use to measure and compare the power from various solar cells. It uses a simple technique with computer probeware to measure the current/voltage curve of a...
Nanoimprinting
How to Replicate the grating structure from old DVD using nanoimprint and it’s application in improving solar cell efficiency. By Chen Zou Electrical Engineering Overview: In this demonstration lab students replicate a nano-scale grating structure from old DVD using nanoimprinting. They explore the technique could be used in improving solar cell efficiency. Essential Question How can we mass produce materials with nano-scale features using imprinting technique? Background: [caption id="" align="alignright" width="170"] Pits on CD-ROM and DVD[/caption] Small features on the surface of materials can create a variety of useful properties. Repeated small pit or lines on the scale of 10-100 nm cause some interesting effects with light. The rainbow color of...
Luminescent Solar Concentrator
[vc_row][vc_column][vc_column_text] Overview: This maker project demonstrates how fluorescent materials can be used to make a new kind of solar panel. [caption id="attachment_5066" align="alignright" width="276"] A model luminescent solar concentrator.[/caption] Essential Question: Can we make a device that collects diffuse radiation and concentrates it for electrical generation? Background: A luminescent solar concentrator (LSC) is a transparent piece of plastic or glass that has a fluorescent dye or quantum dots embedded or painted on it. The dye absorbs light and then fluoresces creating a glow that propagates by total internal reflection to the edge of the sheet where the light is absorbed by a narrow solar cell. This is a promising technology because...
Solar Circuits
[vc_row][vc_column][mkd_section_title title="Solar Circuits" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Students can learn a lot about solar cells by playing around with simple circuits. You can build your own solar exploration kit with inexpensive materials purchased online. After you collect your materials keep them together in a box (Solar Circuits Lesson)[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18214" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]Is it possible to build an affordable solar exploration kit at home?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]The most common photovoltaic is the silicon solar cell. A single cell has a dark blue front side with a grid of thin current collecting wires and solid conductive back. A single...
Print a Solar Car
[vc_row][vc_column][mkd_section_title title="Print a Solar Car" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Student use their makerspace tools to build a solar car chassis.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18215" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can we use 3D printing to make an experimental solar car?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]One of the most popular classroom activities conducted by The Clean Energy Ambassadors has been the solar car derby. Student experiment with different arrangements of solar panels on different car chassis. By the end of a busy event we found our cars were often wrecked. Motors broke loose, leads ripped from motors, and clip leads lost. Also we found students...
Electrochemical Chameleon
[vc_row][vc_column][mkd_section_title title="Electrochemical Chameleon" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]By Katie Corp - Schlenker Research Group Students experiment with acidity of solutions and then use electricity to split water into hydrogen and oxygen and observe changes in the solution.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18210" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can water be split into its simple elements?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]One way to produce hydrogen gas and oxygen gas for energy storage is water splitting via electrolysis. Electrolysis is a process of using an electrical current to drive a chemical reaction that would otherwise not happen, or is non-spontaneous. In this lab, we will electrolyze normal tap...
Solar Car Derby
[vc_row][vc_column][mkd_section_title title="Solar Car Derby" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Students design and assemble model solar cars and race them on a track.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18287" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]What design makes the fastest solar car?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]A solar car captures solar energy with solar cells, converts the energy to electricity that powers electric motors. In a large scale it’s very difficult to capture enough energy from the roof of a car to power a vehicle. One example is the 3000 km World Solar Challenge in Australia in which 1000 Watt solar panels power very light efficient vehicles with minimal battery...
Aluminum Air Battery
[vc_row][vc_column][mkd_section_title title="Aluminum Air Battery" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]Storing energy is one of the biggest challenges facing the scaling up of clean energy technologies. The goal of this activity is to allow students to design and build a battery using their understanding of oxidation and reduction reactions. Students will use everyday materials, including aluminum foil, salt water, charcoal, and copper foil, to build a non-rechargeable battery cell capable of powering an LED. Students should be familiar with balancing equations using half-reactions. Essential Questions: Can energy be captured and stored? How can we capture the energy released from a chemical reaction to produce useful electrical power?[/vc_column_text][/vc_column][/vc_row][vc_row][vc_column][mkd_accordion style="toggle"][mkd_accordion_tab icon_pack=""...
Solar Spinner
[vc_row][vc_column][vc_column_text]Build a device from a solar cell, motor and petri dish. It demonstrates conversion of solar energy to electricity and then to mechanical energy.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18217" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How do we build a toy that uses solar energy to make it spin?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]The front of the solar cell is connected to one wire of the motor, and the back is connected to the other. This makes a complete circuit. It is very important not to let the leads that come from the top of cell to touch the tape coming from the bottom of the cell...
- 1
- 2