Skip to main content
 

Archive

Solar Energy Data Exploration

Overview: Students examine patterns in direct and diffuse radiation. Students compare generation from the solar panels to the absolute insolation. Students perform a cost benefit analysis for a home energy system Investigations with Solar Data lesson Essential Question How can we precisely measure the amount of solar radiation that is available for solar generation? NGSS Standards: Standard Number Standard text 4-PS3-2 Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. HS-ESS2-4 Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate. HS-PS4-5. Communicate technical information about how some technological devices use the...

Nanoimprinting

How to Replicate the grating structure from old DVD using nanoimprint and it’s application in improving solar cell efficiency. By Chen Zou Electrical Engineering Overview: In this demonstration lab students replicate a nano-scale grating structure from old DVD using nanoimprinting. They explore the technique could be used in improving solar cell efficiency. Essential Question How can we mass produce materials with nano-scale features using imprinting technique? Background: [caption id="" align="alignright" width="170"] Pits on CD-ROM and DVD[/caption] Small features on the surface of materials can create a variety of useful properties. Repeated small pit or lines on the scale of 10-100 nm cause some interesting effects with light. The rainbow color of...

Luminescent Solar Concentrator

[vc_row][vc_column][vc_column_text] Overview: This maker project demonstrates how fluorescent materials can be used to make a new kind of solar panel. [caption id="attachment_5066" align="alignright" width="276"] A model luminescent solar concentrator.[/caption] Essential Question: Can we make a device that collects diffuse radiation and concentrates it for electrical generation? Background: A luminescent solar concentrator (LSC) is a transparent piece of plastic or glass that has a fluorescent dye or quantum dots embedded or painted on it. The dye absorbs light and then fluoresces creating a glow that propagates by total internal reflection to the edge of the sheet where the light is absorbed by a narrow solar cell. This is a promising technology because...

Electrochemical Chameleon

[vc_row][vc_column][mkd_section_title title="Electrochemical Chameleon" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]By Katie Corp - Schlenker Research Group Students experiment with acidity of solutions and then use electricity to split water into hydrogen and oxygen and observe changes in the solution.[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18210" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can water be split into its simple elements?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]One way to produce hydrogen gas and oxygen gas for energy storage is water splitting via electrolysis. Electrolysis is a process of using an electrical current to drive a chemical reaction that would otherwise not happen, or is non-spontaneous. In this lab, we will electrolyze normal tap...

Bubble Raft Crystal Model

[vc_row][vc_column][mkd_section_title title="Bubble Raft Crystal Model" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]In this demonstration / lab students use uniform bubbles floating on water to model the formation and organization of atoms in crystals (Bubleraft Lesson)[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18209" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]Can we use bubbles floating on water to model the organization of atoms forming a crystal?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]Self-assembly is the idea that particles can organize themselves into the complex structures with a high amount of order. Closely packed balls of the same size will eventually sort themselves into tightly packed rows that look like the atoms arranged in crystals. At...

Rainbow Bookmarker

[vc_row][vc_column][mkd_section_title title="Rainbow Bookmarks" title_size="large" title_color="" title_text_align="" margin_bottom="" width=""][vc_column_text]In this activity, students trap an extremely thin layer of clear nail polish which causes interference of light waves making a rainbow layer on a black bookmark. PDF[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18203" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]What happens when light reflects off thin layers of materials?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]The reason the rainbow is seen is because the layer of clear nail polish is so thin that it reflects light in different wavelengths. Slight difference in thickness cause light waves of different length to interfere with each other-- sometimes cancelling and sometimes reinforcing. Other examples of...

Absorption and Fluorescence with USB Spectrometer

[vc_row][vc_column][vc_column_text] Overview: [caption id="attachment_4862" align="alignright" width="297"] A USB spectrometer measures light that passes through a solution in the cuvette.[/caption] Students explore how different materials absorb and emit light, then measure spectra with a desktop spectrometer. Essential Question: How do we measure the absorption and emission of light? Background: Light travels from here to there like a really fast bullet. When we see a light turn on, there are particles of light called photons that travel from the lamp to your eye. Light goes so fast that in one second, light travels 180,000 miles! That's traveling across the US 72 times in one second!  All light is made of photons, when a...

Water Model of Electricity

Created by Nathan Wilson for the University of Washington Clean Energy Institute Overview: The goal of this activity is to allow students to apply their knowledge of Ohm’s law to a more intuitive and visual system: water flowing through tubes. The total time for this activity is around 30 minutes. Students are assumed to be familiar Ohm’s law (V/R=I) where V is volts, R is resistance, and I is current, as well as the formula for calculating the resistance of a resistor (R=ρl/A).  where p is resistivity in ohms/meter, l is length, A is area of the conductor. Essential Question: How can we model the behavior of electricity...

Glowing Colors

[vc_row][vc_column][vc_column_text]Students explore how different materials absorb and emit light of different colors[/vc_column_text][vc_empty_space height="30px"][vc_hoverbox image="18248" primary_title="" primary_align="left" hover_title="QUESTION" shape="square" el_width="30" align="left"]How can materials make light of different colors?[/vc_hoverbox][vc_empty_space height="40px"][mkd_accordion style="boxed_toggle" el_class="GLOWING COLORS"][mkd_accordion_tab icon_pack="" title="Background"][vc_column_text]White light is composed of lights of different colors. Each color is carried by a light moving as a wave. Different materials reflect light of different colors, or they absorb light of other colors. If an object appears red, it because all the other colors besides red are absorbed and only red light is reflected. Some materials create light when they are energized by light, electricity, heat or by chemical reactions. This...