

BILLY J. STANBERY

Research Scientist, Innovator, Entrepreneur, Mentor, and Leader

Curriculum Vitae

5404 Abilene Trail
Austin, TX 78749 USA

mobile: +1 (512) 925-1810
email: bjsuwpv@uw.edu

TABLE OF CONTENTS

Statement of Career Objective	2
Current Positions	2
Education	2
Work Experience.....	3
Academic Projects.....	4
Awards	5
Professional Affiliations.....	5
Additional Professional Activities	6
Service as Scientific Reviewer	6
Journals	6
Conferences	6
Other	7
Publications	7
Conference and Workshop Presentations.....	13
Invited Lectures	14
U.S. Patents (Excluding International Extensions)	15
Research Contracts and Grants.....	16
Computer Skills	16
Personal.....	17
References	17

STATEMENT OF CAREER OBJECTIVE

My career goal is to leverage my experience, creativity, skills, and interpersonal network to effectively help create a more just and sustainable future for our world. The most effective means to achieve this objective is to apply my organizational and fund-raising skills towards a combination of: (1) continuing and publishing research which helps bring the next generation of lower-cost thin film photovoltaic technology to large-scale global deployment while educating future generations of contributors; and (2) leading, team-building, mentoring, facilitating, and collaborating with others who share this goal to translate our work into successfully commercialized and impactfully adopted products and services.

CURRENT POSITIONS

Present **University of Washington**, Seattle, WA: Research Professor of Chemical Engineering.

Colorado School of Mines, Golden, CO: Affiliate Professor of Biological and Chemical Engineering.

National Laboratory of the Rockies, Golden, CO.: Joint appointment with Colorado School of Mines.

HelioSourceTech, LLC, Tucson, AZ: Member.

HelioSynergy, LLC, Austin, TX. Manager.

EDUCATION

2001 **University of Florida**, Gainesville, Florida. *Ph.D. in Chemical Engineering*. Advisor: Professor Timothy J. Anderson. Dissertation title: "Heteroepitaxy and Nucleation Control for the Growth of Metal Chalcogenides Using Activated Reactant Sources". Central research areas: growth of copper indium selenide thin films, computational materials modeling utilizing thermochemical reaction theory, microwave hybrid ECR helicon plasma source design, and rotating disc migration enhanced epitaxy reactor design and process development.

1982 **University of Washington**, Seattle, Washington. *M.S. Degree in Physics*. Advisors: Professor Martin Gouterman (Chemistry) and Professor Samuel Fain (Physics). Central research areas: ultrahigh vacuum studies of metalorganic porphyrin semiconductor thin film photovoltaic cell device physics in the Laboratory of Porphyrin Electro-Optics.

1977 **University of Texas**, Austin, Texas. *B.S. Degree in Physics with High Honors*. Advisor: Professor Melvin Oakes. Senior honors independent studies with 1977 Nobel Laureate Professor Ilya Prigogine. Senior research experimental project on

superconducting quantum interference device fabrication. Fusion Research Center Tokamak instrumentation technician.

1977 **University of Texas**, Austin, Texas. *B.S. Degree in Mathematics with Honors.* Advisor: Professor William Guy. Elective courses emphasizing mathematical analysis, integral transforms, linear differential operators, and tensor field theory.

WORK EXPERIENCE

01/25-Present **Research Professor, University of Washington**, Seattle, WA: Member of the Clean Energy Institute.

02/22-Present **Research Professor, Colorado School of Mines**, Golden, CO: Joint appointment with the National Renewable Energy Laboratory.

05/21-Present **Owner, HelioSynergy, LLC**, Austin, TX. Responsibilities: Due diligence for investors and consultant to government agencies and commercial corporations under NDA.

03/20-Present **Partner, HelioSourceTech, LLC**, Tucson, AZ. Responsibilities: Photovoltaic module manufacturing tool design and process modeling.

03/17-12/19 **Chief Science Officer, Siva Power, Inc.** Responsibilities: pilot full-scale reactive co-deposition (RCD) reactor mass transport and thermal modeling, and production process development; transfer function model-based process control automation; metrology and data science infrastructure development for multivariate and functional analysis; statistical design of experiments for process optimization.

03/15-03/17 **President, Siva Power, Inc.**, San Jose, California. Responsibilities: equity investment fund-raising; product roadmap and cost modeling; corporate financial management and public relations.

2001-2014 **Founder, HelioVolt Corporation**, Austin, Texas. Served as Chief Executive Officer 2001-2008, as Chief Strategy Officer 2009-2012, and Chief Science Officer 2012-2014. Raised \$233M private equity investment. Built a team of 115 employees supporting pilot manufacturing operation of UL & IEC-certified 0.6×1.2-meter monolithically integrated modules with best production campaign achieving $14.7 \pm 0.2\%$ AM1.5G total-area efficiency with 92% yield and champion module efficiency of 15.0%. Initiated and managed a Cooperative Research and Development Agreement (CRADA) with the National Renewable Energy Laboratory (NREL) for ten years that resulted in numerous patents and the 2008 Editor's Choice R&D 100 Award. HelioVolt Technical Advisory Panel chaired by Nobel Laureate Dr. Arno Penzias, former Chief Scientist of Bell Laboratories.

1978-1994 **Engineer, The Boeing Company**, Seattle, Washington. Responsibilities: 1978-1982, Senior Microelectronics Engineer with the Electronics Support Division of the Boeing Aerospace Company developing fabrication processes for very high-power silicon concentrator solar cells; designed and operated an advanced computer-controlled concentrator solar cell test facility; served as a consultant at Boeing on an Air Force SMATH V subcontract for the development of metallization systems and device configurations for high-temperature silicon cell applications; 1982-1985: Responsible for device design and manufacturing process development for large area CuInSe₂ solar cell and module technology; 1985-1988: Initiated collaborative development of thin film CLEFT GaAs/CIS tandem solar cells with MIT Lincoln Laboratories and its spin-out Kopin Corporation, culminating in a 25.8% AM1.5G mechanically stacked tandem listed as the world record multijunction thin-film device in *Prog. Photovolt: Res. Appl., Solar Cell Efficiency Tables* from 1990-2008; 1988-1994: Senior Principal Engineer at the Boeing Electronic Company High Technology Center, managing its terrestrial photovoltaic program, including three contracts with NREL, "Photovoltaic Manufacturing Technology: Phase 1", "A New Source of Hydrides for Epitaxial Growth", and "Research in Polycrystalline CuInGaSe₂ Solar Cells." Led the team that set what was at the time the record for CIGS thin film cell efficiency (achieved under the last contract) of 14.6% AM1.5G. 1994: Negotiated donation of Boeing's key CIGS research equipment to the University of Florida's Microfabritech facility, as part of a technology transfer to pursue doctorate.

ACADEMIC PROJECTS

1994-2000 **University of Florida**, Gainesville, Florida. Wrote the seminal technical proposal to the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) Thin Film Photovoltaic Partnership Program that won the competitive procurement award which funded the establishment of a multidisciplinary photovoltaics research program at the university across the departments of Chemical Engineering, Materials Science and Engineering, and Electrical Engineering. Directly engaged in coordinating collaborative research between faculty's principal investigators and teambuilding among fellow students while building the Plasma Migration Enhanced Epitaxy (PMEE) reactor laboratory and taking all required graduate level courses in Chemical Engineering. Served as the teaching assistant for several undergraduate courses including kinetics and process thermodynamics. My dissertation was published by NREL as the final report for that contract (<http://www.nrel.gov/docs/fy01osti/30391.pdf>) and research continued under funding from several follow-on contracts for many years. A vibrant PV academic research community thrives at UF to this day.

1987-1988 **Boeing Outstanding Engineering Fellow, Center for Advanced Engineering Study**, Massachusetts Institute of Technology, Cambridge, Massachusetts. Research on radical-beam-assisted heteroepitaxy of ZnSe on GaAs with Professor Herbert Sawin in the Department of Chemical Engineering. This project was part

of a larger multidepartment effort to explore the potential use of ZnSe/GaAs heterostructures for blue LED and MISFET applications. My interest was driven by [the prospect of using these structures](#) as part of a [monolithically integrated \(Al,Ga\)As/CuInSe₂ tandem cell](#). It also motivated my interest in the use of activated reactant sources for epitaxial growth and subsequent development of the hybrid ECR helicon evaporation source cracker whose development was funded by NREL and incorporated into the rotating disc PMEE reactor at UF.

AWARDS

2008	R&D 100 Editor's Choice Most Revolutionary Technology Award Winner: NREL and HelioVolt for "Hybrid CIGS combining non-vacuum liquid chemical precursors with FASST® Process"
2007	IDTechEx Printed Electronics Award 2007 , Best New Product Development
2006	Wall Street Journal Technology Innovation Award: <i>FIRST PLACE</i> , Energy and Power
2006	Time Magazine's Best Innovations of 2006 for FASST™ Process
2006	Nanotech Briefs' Nano50 Award for FASST™ Process
2006	Frost & Sullivan Innovation Award for Thin-Film Photovoltaics
1994	R&D 100 Award: Boeing Aerospace Corporation for "Copper Indium Selenide/Cadmium Zinc Sulfide Solar Cell"
1976	Sigma Pi Sigma (honorary academic society for physics)
1976	Pi Mu Epsilon (honorary academic society for mathematics)
1974	Phi Beta Kappa, Alpha Chapter of Texas

PROFESSIONAL AFFILIATIONS

Current	American Physical Society
2026	Topical Group on Energy Research and Applications [GERA] Executive Committee, Chair
2025	Topical Group on Energy Research and Applications [GERA] Executive Committee, Chair-Elect
2024	Topical Group on Energy Research and Applications [GERA] Executive Committee, Vice-Chair
2023	Topical Group on Energy Research and Applications [GERA] Executive Committee, Member-at-Large
Current	Institute of Electrical and Electronic Engineers, Senior Member
2026	Global Outreach Committee Co-Chair, 9 th World Conference on Photovoltaic Energy Conversion [WCPEC-9] Daejeon, Korea
2012-Present	Member of the Cherry and International Advisory Committees, IEEE Photovoltaics Specialists Conference
2013	Chair of the Cherry Committee, 39 th IEEE Photovoltaics Specialists Conference, (PVSC 39) Tampa, Florida
2012	General Chair, 38 th IEEE Photovoltaics Specialists Conference, (PVSC 38) Austin, Texas

2011	Deputy Chair and Secretary, 37 th IEEE Photovoltaics Specialists Conference, (PVSC 37) Seattle, Washington
Current	American Institute of Chemical Engineers, Senior Member, Advanced Manufacturing and Processing Society [AMPs]
Current	Materials Research Society
Current	The Minerals, Metals & Materials Society (TMS), Materials Processing & Manufacturing Division
	American Association for Crystal Growth
	American Vacuum Society
	Society of Vacuum Coaters

ADDITIONAL PROFESSIONAL ACTIVITIES

2020-present	Industry Advisory Board member, U.S. Manufacturing of Advanced Perovskites (US-MAP)
2016-present	Industry Advisory Board member, Durable Module Materials Consortium (DuraMAT)
2020-2022	Executive Board advisor, US Manufacturing of Advanced Perovskites Consortium (US-MAP)
2011-2018	Executive Board member, Bay Area PV Consortium (BAPVC)
2013-2014	President, Texas Solar Energy Industry Association (TXSEIA)
2013	Metrology Working Group Leader, The U.S. CIGS Photovoltaic Roadmap (PVMC/SEMATECH, Inc.)
2012	President, Texas Renewable Energy Industry Alliance (TREIA)
2008-2012	Director, Texas Foundation for Innovative Communities (TFIC)

SERVICE AS SCIENTIFIC REVIEWER

JOURNALS

2006-Present	<i>Service as reviewer</i> for major peer-refereed journals in physics, materials science, electrochemistry, thermochemistry, reliability science, and photovoltaics including <i>Physical Review B</i> , <i>Journal of Applied Physics</i> , <i>Applied Physics Letters</i> , <i>The Journal of Physical Chemistry</i> , <i>Electrochemical Society Journal of Solid State Science and Technology</i> , <i>Institute of Physics Progress in Energy</i> , <i>Journal of Alloys and Compounds</i> , <i>SPIE Journal of Photonics for Energy</i> , <i>American Chemical Society Nano Letters</i> , <i>Thin Solid Films</i> , <i>Progress in Photovoltaics</i> , <i>Journal of Photovoltaics</i> , and <i>Nature Scientific Reports</i> .
--------------	--

CONFERENCES

2004-Present	<i>Service as reviewer</i> for several IEEE Photovoltaics Conferences in Area 2 (thin-film photovoltaics)
--------------	---

OTHER

2011-Present	<i>Service as reviewer</i> for consortium funding proposals to the Durable Module Materials Consortium (DuraMAT).
2001-2003	<i>Service as reviewer</i> for U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) funding proposals.

PUBLICATIONS

- 1 M. Dimitrievska, E. Saucedo, S. De Wolf, B. J. Stanbery, and V. Bermudez Benito, "Lessons from copper indium gallium sulfo-selenide solar cells for progressing perovskite photovoltaics," *Nature Energy*, 2026, <https://doi.org/10.1038/s41560-025-01936-0>.
- 2 Alberi, K., Peters, I. M., Verlinden, P., Philipps, S., Koike, A., Barnes, T.,, Stanbery, B. J.,, Bett, A. W. "Historical and future learning for the new era of multi-terawatt photovoltaics," *Nature Energy*, 2025, <https://doi.org/10.1038/s41560-025-01929-z>.
- 3 D. Colombara, B.J. Stanbery, and G. Sozzi, "Revani diffusion model in Cu(In,Ga)Se₂," *Journal of Materials Chemistry A*, 2023, **11**(48): 26426-26434. <https://doi.org/10.1039/D3TA03690A>.
- 4 B.J. Stanbery and J. van de Lagemaat, "Disruptive Photovoltaic Technologies Can Accelerate Global Decarbonization," 2023 *IEEE Green Technologies Conference (GreenTech)*, Denver, CO, USA, 2023, pp. 31-34, <https://doi.org/10.1109/GreenTech56823.2023.10173795>.
- 5 Stanbery, B.J., Woodhouse, M. and van de Lagemaat, J., Photovoltaic Deployment Scenarios toward Global Decarbonization: Role of Disruptive Technologies. *Solar RRL*, 7: 2300102 (2023). <https://doi.org/10.1002/solr.202300102>.
- 6 Haegel, N. M., P. Verlinden, M. Victoria, P. Altermatt, H. Atwater, T. Barnes, C. Breyer, C. Case, S. De Wolf, C. Deline, M. Dharmrin, B. Dimmler, M. Gloeckler, J. C. Goldschmidt, B. Hallam, S. Haussener, B. Holder, U. Jaeger, A. Jaeger-Waldau, I. Kaizuka, H. Kikusato, B. Kroposki, S. Kurtz, K. Matsubara, S. Nowak, K. Ogimoto, C. Peter, I. M. Peters, S. Philipps, M. Powalla, U. Rau, T. Reindl, M. Roumpani, K. Sakurai, C. Schorn, P. Schossig, R. Schlatmann, R. Sinton, A. Slaoui, B. L. Smith, P. Schneidewind, B. Stanbery, M. Topic, W. Tumas, J. Vasi, M. Vetter, E. Weber, A. W. Weeber, A. Weidlich, D. Weiss and A. W. Bett (2023). "Photovoltaics at multi-terawatt scale: Waiting is not an option." *Science* 380(6640): 39-42. <https://www.science.org/doi/10.1126/science.adf6957>.
- 7 **Billy Stanbery**, Daniel Abou-Ras, Akira Yamada, and Lorelle Mansfield, "CIGS Photovoltaics: Reviewing an Evolving Paradigm," *J. Phys. D: Appl. Phys.* **55** 173001 (2022). <https://doi.org/10.1088/1361-6463/ac4363>.
- 8 Vasilis M. Fthenakis, Marco Raugei, Christian Breyer, Suby Bhattacharya, Michael Ginsberg, Arnulf Jaeger-Waldau, Enrica Lecissi, Daniel Lincot, Dave Murphy, Marc R. Perez, Parikhit Sinha, Angus Rockett, Sascha Sadewasser, BJ Stanbery, Richard Swanson, Pierre Verlinden, Dave Carbajales-Dale, "Critique of the paper: 'Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition,'" *Energies* **2022**, 15(3), 971; <https://doi.org/10.3390/en15030971>.

9 Gregory M. Wilson, Mowafak Al-Jassim, Wyatt K. Metzger, Stefan W. Glunz, Pierre Verlinden, Gang Xiong, Lorelle M. Mansfield, Billy J. Stanbery, Kai Zhu, Yanfa Yan, Joseph J. Berry, Aaron J. Ptak, Frank Dimroth, Brendan M. Kayes, Adele C. Tamboli, Robby Peibst, Kylie Catchpole, Matthew O. Reese, Christopher S. Klinga, Paul Denholm, Mahesh Morjaria, Michael G. Deceglie, Janine M. Freeman, Mark A. Mikofski, Dirk C. Jordan, Govindasamy TamizhMani, and Dana B. Sulas-Kern, "The 2020 Photovoltaics Roadmap," *J. Phys. D: Appl. Phys.* **53** 493001 (2020).

10 Nancy M. Haegel, Harry Atwater Jr., Teresa Barnes, Christian Breyer, Anthony Burrell, Yet-Ming Chiang, Stefaan De Wolf, Bernhard Dimmler, David Feldman, Stefan Glunz, Jan Christoph Goldschmidt, David Hochschild, Ruben Inzunza, Izumi Kaizuka, Ben Kroposki, Sarah Kurtz, Sylvère Leu, Robert Margolis, Koji Matsubara, Axel Metz, Wyatt K. Metzger, Mahesh Morjaria, Shigeru Niki, Stefan Nowak, Ian Marius Peters, Simon Philipps, Thomas Reindl, Andre Richter, Doug Rose, Keiichiro Sakurai, Rutger Schlatmann, Masahiro Shikano, Wim Sinke, Ron Sinton, B.J. Stanbery, Marko Topic, William Tumas, Yuzuru Ueda, Jao van de Lagemaat, Pierre Verlinden, Matthias Vetter, Emily Warren, Mary Werner, Masafumi Yamaguchi and Andreas W. Bett, "Terawatt-scale photovoltaics: Transform global energy," *Science*, 364 (6443), 836–838 (2019).

11 Sarah E. Sofia, Jonathan P. Mailoa, Dirk N. Weiss, Billy J. Stanbery, Tonio Buonassisi and I. Marius Peters, "Economic viability of thin-film tandem solar modules in the United States," *Nature Energy*, 3, 387–394 (2018).

12 Daniel Abou-Ras, Sigurd Wagner, Bill J. Stanbery, Hans-Werner Schock, Roland Scheer, Lars Stolt, Susanne Siebentritt, Daniel Lincot, Chris Eberspacher, Katsumi Kushiya, Ayodhya N. Tiwari, "Innovation highway: Breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint," *Thin Solid Films* 633, 2–12, (2017).

13 C.R. Bukowski, J. Grandidier, K.T. Fountaine, D.M. Callahan, B.J. Stanbery, H.A. Atwater, "Photon and carrier management design for nonplanar thin-film copper indium gallium selenide photovoltaics." *Sol. Energy Mater. Sol. Cells* 161, 149-156 (2017).

14 Jian Li, Puja Pradhan, Prakash Koirala, Xinxuan Tan, Baosheng Sang, Billy J. Stanbery, Nikolas J. Podraza, and Robert W. Collins, "Through-the-Glass Spectroscopic Ellipsometry for Simultaneous Mapping of Coating Properties and Stress in the Glass," in *The Conference Record of the 42nd IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2015, 934.

15 G. Yue, D. Lu, B. Cheng, B. Sang, and B.J. Stanbery, "Electroluminescence Intensity Analysis of Neutral Bulk and Space Charge Region Collection Effects on Large-area CIGS Module Performance," in *The Conference Record of the 40th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2014, pp. 2056-2059.

16 G. Yue, D. Lu, K. Moritomo, B. Sang, and B.J. Stanbery, "Electroluminescence and Thermal Imaging of Large-Area Cu(In,Ga)Se₂ Modules," in *The Conference Record of the 39th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2013, pp. 2068 - 2072.

17 D. Lu, E. P. Christiansen, C. W. Walsh, J. F. Chase, R. M. Miller, M. F. Miller, C. R. Martinez, B. Sang, and B.J. Stanbery, "Metrology and Process Optimization for Large Area Monolithically Integrated Cu(In,Ga)Se₂ Modules," in *The Conference*

17 *Record of the 38th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2012, pp. 1974-1977.

18 P.A. Hersh, M. van Hest, V. Bollinger, J. J. Berry, D.S. Ginley, and B.J. Stanbery, "Using Amorphous Zinc-Tin Oxide Alloys in the Emitter Structure of CIGS PV Devices," in *The Conference Record of the 38th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2012, pp. 1673-1676.

19 P.A. Hersh, C.J. Curtis, M.F.A.M. van Hest, S.E. Habas, A. Miedaner, D.S. Ginley, and B.J. Stanbery, "Solution deposited precursors and rapid optical processing used in the production of CIGS solar cells," in *The Conference Record of the 37th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2012, pp. 372-373.

20 P.A. Hersh, C. J. Curtis, M.F.A.M. van Hest, S. E. Habas, A. Miedaner, D.S. Ginley, and B.J. Stanbery, "Solution-based precursors in conjunction with rapid optical processing for high-quality hybrid CIGS," in *Proceedings SPIE: Thin Film Solar Technology III*, Eldada, L. A., Ed., vol. 8110, Bellingham: SPIE, 2011, 811007.

21 L. Eldada, P. Hersh, B. Sang, B.J. Stanbery, C. Curtis, A. Miedaner, S. Habas, M M.F.A.M. van Hest, and D. Ginley, "High-efficiency low-cost photovoltaic modules based on CIGS thin films from solution precursors," *Materials Research Society Symposium Proceedings Volume 1247*, Cambridge University Press, 2011, pp. C5-1.

22 L. Eldada, P. Hersh, and B.J. Stanbery, "Solution-deposited CIGS thin films for ultra-low-cost photovoltaics," in *Proceedings SPIE: Thin Film Solar Technology II*, Delahoy, A. E. and Eldada, L. A., Eds., vol. 7771, Bellingham: SPIE, 2011, 77710I.

23 **B.J. Stanbery**, L. Peterson, D. Lewin, E. Auerbach, "The Role of Workforce Training and Innovation-Centric Economic Development in Growth of the US PV Market," in *Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion*. Brussels: European Commission Joint Research Centre, 2010, pp. 5242-5246.

24 B. Sang, F. Adurodija, M. Taylor, A. Lim, J. Taylor, Y. Chang, S. McWilliams, R. Oswald, B.J. Stanbery, M.F.A.M. van Hest, J. Nekuda, A. Miedaner, C. Curtis, J. Leisch, D. Ginley, "Low cost copper indium gallium selenide by the FASST® process," in *The Conference Record of the 33rd IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2009, pp. 1-4.

25 J.A.N. Malik, M.F.A.M. van Hest, A. Miedaner, C. J. Curtis, J. E. Leisch, P.A. Parilla, M. Kaufman, M. Taylor, B.J. Stanbery, R.P. O'Hayre, and D.S. Ginley, "Atmospheric Pressure Synthesis of In₂Se₃, Cu₂Se, and CuInSe₂ without External Selenization from Solution Precursors," *Journal of Materials Research*, vol. 24(4), 2009, pp. 1375-1387.

26 P.A. Hersh, M. Taylor, B. Sang, M.F.A.M. van Hest, J. A. Nekuda, A. Miedaner, C.J. Curtis, J.E. Leisch, D.S. Ginley, B.J. Stanbery, and L. Eldada, "FASST® Reactive Transfer Printing for Morphology and Structural Control of Liquid Precursor Based Inorganic Reactants," *Materials Research Society Symposium Proceedings*, Vol. 1123. Warrendale, PA: Materials Research Society pp. 95-104.

27 L. Eldada, F. Adurodija, B. Sang, M. Taylor, A. Lim, Y. Chang, S. McWilliams, R. Oswald, and B.J. Stanbery, "Development of Hybrid Copper Indium Gallium Selenide Photovoltaic Devices by FASST® Printing Process," in *Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition*. Brussels: European Commission Joint Research Centre, 2008, pp. 2142-2146.

28 I. L. Repins, B.J. Stanbery, D.L. Young, S.S. Li, W.K. Metzger, C.L. Perkins, W.N. Shafarman, M.E. Beck, L. Chen, V.K. Kapur, D. Tarrant, M.D. Gonzalez, D.G. Jensen, T.J. Anderson, X. Wang, L.L. Kerr, B. Keyes, S. Asher, and A. Delahoy, "Comparison of Device Performance and Measured Transport Parameters in Widely-Varying Cu(In,Ga)(Se,S) Solar Cells," *Progress in Photovoltaics: Research and Applications*. Vol. 14(1) 2006, pp. 25-43.

29 **B.J. Stanbery**, "The Intra-absorber Junction (IAJ) Model for the Device Physics of Copper Indium Selenide-based Photovoltaics," in *Conference Record of the 31st IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2005, pp. 355-358.

30 Yanfa Yan, R. Noufi, K.M. Jones, K. Ramanathan, M.M. Al-Jassim, and B.J. Stanbery, "Chemical Fluctuation-induced Nanodomains in Cu(In,Ga)Se₂ Films," *Applied Physics Letters*, vol. 87, 2005, 121904.

31 J. Lazewski, H. Neumann, K. Parlinski, G. Lippold, and B.J. Stanbery, "Lattice dynamics of CuAu-ordered CuInSe₂," *Phys. Rev. B: Condens. Matter Mater. Phys.*, **68**, 14, pp. 108-101, (2003).

32 **B.J. Stanbery**, "Copper Indium Selenides and Related Materials for Photovoltaic Devices," *Critical Reviews in Solid State and Materials Sciences*, vol. 27, Boca Raton: CRC Press, 2002, pp. 73-117.

33 **B.J. Stanbery**, S. Kincal, S. Kim, C.H. Chang, S.P. Ahrenkiel, G. Lippold, H. Neumann, T.J. Anderson, and O.D. Crisalle, "Epitaxial Growth and Characterization of CuInSe₂ Crystallographic Polytypes," *Journal of Applied Physics*, vol. 91, 2002, pp. 3598-3604.

34 M. Ider, R. Pankajavalli, B.J. Stanbery, W. Zhuang, L.L. Kerr, C.H. Chang, T.J. Anderson, "Cuprous Selenide Defect Equilibria and Homogeneity Range Determined by Coulometric Titration," in *The Conference Record of the 29th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2002, pp. 680-683.

35 C.H. Huang, Sheng S. Li, W.N. Shafarman, E.S. Lambers, L. Rieth, C.H. Chang, J.W. Johnson, S. Kim, B.J. Stanbery, T.J. Anderson, and P.H. Holloway, "Study of Cd-free buffer layers using In_x(OH,S)_y on CIGS solar cells," *Solar Energy Materials and Solar Cells* 69(2), 131-137, 2001.

36 C.H. Chang, Su-Huai Wei, S. P. Ahrenkiel, J.W. Johnson, B.J. Stanbery, T.J. Anderson, S.B Zhang, M.M. Al-Jassim, G. Bunker, E.A. Payzant, and R. Duran, "Structure Investigations of Several In-rich (Cu₂Se)_x(In₂Se₃)_{1-x} Compositions: From Local Structure to Long Range Order", H.4.3. *MRS Symposium Proceeding "II-VI Compound Semiconductor Photovoltaic Material"*, 2001.

37 **B.J. Stanbery**, S. Kincal, S. Kim, T.J. Anderson, O.D. Crisalle, S.P. Ahrenkiel, and G. Lippold, "Role of Sodium in the Control of Defect Structures in CIS," in *Conference Record of the 28th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 2000, pp. 440-445.

38 C.H. Chang, S. H. Wei, J.W. Johnson, R.N. Battacharya, B.J. Stanbery, T.J. Anderson, and R. Duran, "Long and Short Range Ordering of CuInSe₂," *Japanese Journal of Applied Physics*, vol. Suppl. 39-1, pp. 411-412, 2000.

39 C.H. Chang, S.H. Wei, N. Leyarovska, J.W. Johnson, S.B. Zhang, B.J. Stanbery, and T.J. Anderson, "Local Structure of CuIn₅Se₅," in *Program and Proceedings: NCPV Program Review Meeting 2000*, Golden: National Renewable Energy Laboratory pp. 247-248.

40 **B.J. Stanbery**, C.H. Chang, S. Kim, S. Kincal, G. Lippold, S.P. Ahrenkiel, L. Li, T.J. Anderson, and M. M. Al-Jassim, "Epitaxial Growth of CuAu-Ordered CuInSe₂ Structural Polytypes by Migration Enhanced Epitaxy," in *Self-Organized Processes in Semiconductor Alloys*, vol. 583, MRS Symposium Proceedings, A. Mascarenhas, D. Folstaedt, B. Joyce, and T. Suzuki, Eds. Warrendale: MRS, 1999, pp. 195-200.

41 C.H. Huang, S. S. Li, W. N. Shafarman, C.H. Chang, E. S. Lambers, L. Rieth, J. W. Johnson, S. Kim, B.J. Stanbery, and T.J. Anderson, "Study of Cd-free Buffer Layers Using In_x(OH,S)_y on CIGS Solar Cells," in *Technical Digest of the 11th International Photovoltaic Science and Engineering Conference*. Tokyo: Tokyo University of Ag. & Tech., 1999, pp. 855.

42 **B.J. Stanbery**, C.H. Huang, C.H. Chang, S. S. Li, and T.J. Anderson, "Characterization and Processing of CuInSe₂ Solar Cells," in *Conference Record of the 2nd World Conference on Photovoltaic Solar Energy Conversion*. Brussels: European Commission Joint Research Centre, 1998, pp. 529-532.

43 C.H. Chang, A.A. Morrone, B.J. Stanbery, C. McCreary, M. Huang, C.H. Huang, S.S. Li, and T.J. Anderson, "Growth and Characterization of CdS Buffer Layers by CBD and MOCVD," in *NCPV Photovoltaics Program Review, AIP Conference Proceedings*, M. Al-Jassim, J. P. Thornton, and J. M. Gee, Eds., vol. 462. New York: AIP, 1998, pp. 114-119.

44 **B.J. Stanbery**, C.H. Chang, and T.J. Anderson, "Engineered Phase Inhomogeneity for CIS Device Optimization," in *Ternary and Multinary Compounds, Proceedings of the 11th International Conference*, vol. 152, Institute of Physics Conference Series, R. D. Tomlinson, A. E. Hill, and R. D. Pilkington, Eds. Bristol: IOP, 1997, pp. 915-922.

45 **B.J. Stanbery**, E.S. Lambers, and T.J. Anderson, "XPS Studies of Sodium Compound Formation and Surface Segregation in CIGS Thin Films," in *Conference Record of the 26th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 1997, pp. 499-502.

46 C.H. Chang, B.J. Stanbery, A.A. Morrone, A. Davydov, and T.J. Anderson, "Novel Multilayer Process for CuInSe₂ Thin Film Formation by Rapid Thermal Processing," in *Thin-Film Structures for Photovoltaics*, vol. 485, MRS symposium proceedings, E. D. Jones, J. Kalejs, R. Noufi, and B. Sopori, Eds. Warrendale: MRS, 1997, pp. 163-168.

47 **B.J. Stanbery**, A. Davydov, C.H. Chang, and T.J. Anderson, "Reaction Engineering and Precursor Film Deposition for CIS Synthesis," in *NREL/SNL Photovoltaics Program Review, Proceedings of the 14th Conference*, vol. 394, AIP Conference Proceedings, C. E. Witt, M. Al-Jassim, and J. M. Gee, Eds. New York: AIP, 1996, pp. 579-588.

48 S. S. Li, B.J. Stanbery, C.H. Huang, C.H. Chang, T.J. Anderson, and Y.S. Chang, "Effects of Buffer Layer Processing on CIGS Excess Carrier Lifetime: Application of Dual-Beam Optical Modulation to Process Analysis," in *The Conference Record of the 25th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 1996, pp. 821-824.

49 C.H. Chang, A. Davydov, B.J. Stanbery, and T.J. Anderson, "Thermodynamic Assessment of the Cu-In-Se System and Application to Thin Film Photovoltaics," in *The Conference Record of the 25th IEEE Photovoltaic Specialists Conference*. Piscataway: IEEE, 1996, pp. 849-852.

50 W.S. Chen, J.M. Stewart, W.E. Devaney, R.A. Mickelsen, B.J. Stanbery, "Thin Film CuInGaSe₂ Cell Development," in *The Conference Record of the 23rd IEEE Photovoltaic Specialists Conference*, vol. 1. New York: IEEE, 1993, pp. 422-426.

51 N.P. Kim, J.M. Stewart, B.J. Stanbery, R.A. Mickelsen, W.E. Devaney, W.S. Chen, R.M. Burgess, R.W. McClelland, S. Shastry, J. Dingle, D.S. Hill, B.D. Dingle, R.P. Gale, "Voltage-matched, two-terminal, gallium arsenide (aluminum gallium arsenide)/copper indium selenide (CuInSe₂) tandem solar cells," in *The Conference Record of the 22nd IEEE Photovoltaic Specialists Conference*, vol. 1. New York: IEEE, 1991, pp. 68-72.

52 **B.J. Stanbery**, B.D. King, R. M. Burgess, R. W. McClelland, N.P. Kim, R.P. Gale, and R. Mickelsen, "Lightweight Tandem GaAs/CuInSe₂ Solar Cells," *IEEE Transactions on Electron Devices*, vol. 37, pp. 438-441, 1990.

53 R. P. Gale, R.W. McClelland, B.D. Dingle, J.V. Gormley, R.M. Burgess, N.P. Kim, R.A. Mickelsen, and B.J. Stanbery, "High-Efficiency GaAs/CuInSe₂ and AlGaAs/CuInSe₂ Thin-Film Tandem Solar Cells," in *The Conference Record of the 21st IEEE Photovoltaic Specialists Conference*, vol. 1. New York: IEEE, 1990, pp. 53-57.

54 **B.J. Stanbery**, "Directions for Further Development of GaAs/CuInSe₂ Thin Film Tandem Cells," Proceedings of the 9th Space Photovoltaic Research and Technology Conference (SPRAT 9), Columbus: NASA, 1989, pp. 146-150.

55 N.P. Kim, B.J. Stanbery, R.P. Gale, and R.W. McClelland, "Development of tandem cells consisting of GaAs single crystal and CuInSe₂/CdZnS polycrystalline thin films," Proceedings of the 9th Space Photovoltaic Research and Technology Conference (SPRAT 9), Columbus: NASA, 1989, pp. 138-145.

56 N.P. Kim, R.M. Burgess, B.J. Stanbery, R.A. Mickelsen, J.E. Avery, R.W. McClelland, B.D. King, M.J. Boden, R.P. Gale, "High efficiency gallium arsenide/copper indium diselenide tandem junction solar cells," in *The Conference Record of the 20th IEEE Photovoltaic Specialists Conference*, vol. 1. New York: IEEE, 1988, pp. 457-461.

57 R.M. Burgess, W.S. Chen, W.E. Devaney, D.H. Doyle, N.P. Kim, and B.J. Stanbery, "Electron and proton radiation effects on gallium arsenide and copper indium diselenide thin film solar cells," in *The Conference Record of the 20th IEEE Photovoltaic Specialists Conference*, vol. 2. New York: IEEE, 1988, pp. 909-912.

58 R.A. Mickelsen, W.S. Chen, B.J. Stanbery, and W.E. Devaney, "Polycrystalline CuInSe₂ Thin-Film Solar Cells," in *Technical Digest of the International PVSEC-3*. Tokyo, 1987, pp. 787-790.

59 R.A. Mickelsen, B.J. Stanbery, J.E. Avery, W.S. Chen, and W.E. Devaney, "Large Area CuInSe₂ Thin-Film Solar Cells," in *The Conference Record of the 19th IEEE Photovoltaic Specialists Conference*. New York: IEEE, 1987, pp. 744-748.

60 W.S. Chen, J.M. Stewart, B.J. Stanbery, W.E. Devaney, and R.A. Mickelsen, "Development of Thin Film Polycrystalline CuIn_{1-x}Ga_xSe₂ Solar Cells," in *The Conference Record of the 19th IEEE Photovoltaic Specialists Conference*. New York: IEEE, 1987, pp. 1445

61 **B.J. Stanbery**, M. Gouterman, and R. M. Burgess, "The Requirement of Water for Photovoltaic Response from Porphyrin Sandwich Cells," *Journal of Physical Chemistry*, vol. 89, pp. 4950-4956, 1985.

62 **B.J. Stanbery**, W.S. Chen, R.A. Mickelsen, G. J. Collins, K. A. Emery, J. J. Rocca, and L. R. Thompson, "Silicon nitride anti-reflection coatings for CdS/CuInSe₂ thin film

solar cells by electron beam assisted chemical vapor deposition," *Solar Cells*, vol. 14, pp. 289-291, 1985.

63 R.A. Mickelsen, W.S. Chen, B.J. Stanbery, H. Dursch, J.M. Stewart, Y.R. Hsiao, and W.E. Devaney, *The Conference Record of the 18th IEEE Photovoltaic Specialists Conference*. New York: IEEE, 1985.

64 **B.J. Stanbery**, W.S. Chen, and R.A. Mickelsen, "Integrated Thin-Film CuInSe₂ Monolithic Solar Cell Modules," in *Materials and New Processing Technologies for Photovoltaics*, vol. PV 85-9, The Electrochemical Society Symposium Proceedings, V. K. Kapur, J. P. Dismukes, and S. Pizzini, Eds. Pittsburgh: The Electrochemical Society, 1984, pp. 115-121.

CONFERENCE AND WORKSHOP PRESENTATIONS

10/28/25 *LeVass Ventures investor forum 'Synthetic Semiconductors: Innovation to Commercialization for Photovoltaics and Beyond', Memorial City, Houston, TX*: "Synthetic Semiconductors: Innovation Challenge and Energy Economy Environmental Impact"

06/09/25 *Industrial Forum, IEEE 53rd Photovoltaics Specialists Conference (PVSC) 2025, Montreal, CA*: "Accelerating the worldwide development, commercialization and scaling of climate change solutions"

11/13/24 **35th International Photovoltaic Science and Engineering Conference (PVSEC-35)**, Numazu (Mt. Fuji), Japan: "Scale of economic opportunities enabled by disruptive PV technologies"

07/17/24 **Photovoltaic Technology and Innovation Centre (PoTIC), IIT Bombay webinar**: "Materials Manufacturing Process Intensification for TW-Scale PV"

04/19/23 **2023 IEEE Green Technologies Conference (GreenTech)**, Denver, Colorado: "Disruptive Photovoltaic Technologies Can Accelerate Global Decarbonization"

06/23/22 **National Nanotechnology Coordinated infrastructure, Oregon State University**: "Materials Manufacturing Process Intensification for TW-Scale PV"

06/08/22 B. J. Stanbery and J. van de Lagemaat, "Achieving Global Decarbonization by Photovoltaic Electrification: Impact of Disruptive Technologies," *2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)*, Philadelphia, PA, USA, 2022, pp. 0168, <https://doi.org/10.1109/PVSC48317.2022.9938620>.

04/01/22 **Clean Energy Institute Seminar, University of Washington**: "Materials Manufacturing Process Intensification for TW-Scale PV"

05/23/19 *Invited Speaker: 2019 IEEE Women in Engineering International Leadership Conference (WIE ILC)*, Austin, Texas. [Panel on Innovation and cultural change fueling the Energy Revolution in a Sustainable way](#)

03/30/15 **Roadmap for Multi-functional PV Contacts Workshop**, NREL, Golden, Colorado: "Contacts for CIGS PV Modules: Research Dreams and Manufacturing Reality"

03/01/15 *Invited Speaker: 2015 APS Spring Meeting Workshop on Energy Research and Applications*, San Antonio, Texas: "Materials Challenges for Photovoltaics"

12/03/13 **2013 Fall MRS Meeting, Symposium W: Next-Generation Inorganic Thin-Film Photovoltaics**, Boston, Massachusetts: "Self-assembled Nanostructures in Thin CIGS Absorber Films for Scalable High-Efficiency PV Modules"

04/30/12	<i>Invited Speaker: 2012 Public and Land-Grant University Conference on Energy Challenges: The Next 50 Years.</i> Panel on Renewable Energy: Solar, Wind and Other Innovations
03/28/12	<i>Invited Speaker: International Green Energy Business Conference Korea 2012 (IGEC 2012), PV Business Insights Symposium</i> , Daegu, Korea: "HelioVolt and SK Innovation: Accelerating CIGS into PV Markets"
01/12/12	NSF NNIN Workshop on Materials and Manufacturing for Energy and Electronics (M²E²) , Austin, TX: "CIGS PV Device Structure and its Historical Evolution"
06/30/11	<i>Invited Speaker: 2011 International Conference on Materials for Advanced Technologies</i> , Suntech, Singapore: "CIGS Synthesis by Reactive Transfer Processing of Compound Precursors"
05/09/11	2011 E-MRS/MRS Bilateral Conference on Energy, Symposium R: Advanced inorganic materials and concepts for photovoltaics , Nice, France: "CIGS Synthesis by Reactive Transfer Processing of Compound Precursors"
03/21/11	<i>Invited Speaker: 2011 APS Spring Meeting, Scalable Technologies for Terawatt Photovoltaics</i> , Dallas, Texas: "Challenges to Scaling CIGS Photovoltaics"
03/04/11	<i>Invited Speaker: JSPS 7th Workshop on the Future Direction of Photovoltaics</i> , Tokyo Institute of Technology, Tokyo, Japan: "CIGS Synthesis by Reactive Transfer Processing of Compound Precursors"
10/07/10	2010 MRS Workshop on Thin Film Photovoltaics , Denver, Colorado: "CIGS Synthesis by Reactive Transfer Processing of Compound Precursors"
05/12/08	<i>Invited Keynote: 38th IEEE Photovoltaic Specialists Conference</i> , San Diego, California: "Entrepreneurship on the Road from Science to Sales"
06/26/06	Energy Nanotechnology International Conference 2006, Massachusetts Institute of Technology , Cambridge, Massachusetts: "Nanoscale Composition Fluctuations and Charge Transport in CIGS Photovoltaic Absorbers"
08/20/01	<i>Invited Speaker: 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes</i> , Estes Park, Colorado: "Le Châtelier's 'Principle of Moderation' and the self-passivation of extended defects in CIS materials"
06/22/99	Gordon Research Conference on Thin Films and Crystal Growth Mechanisms , Plymouth, New Hampshire: poster presentation on migration enhanced epitaxy of non-equilibrium CuInSe ₂ crystallographic polytypes on GaAs.
09/12/97	<i>Invited Speaker: 11th International Conference on Ternary and Multinary Compounds (ICTMC-11)</i> , Salford, England: "Engineered Phase Inhomogeneity for CIS Device Optimization"
07/09/97	Gordon Research Conference on Thin Films and Crystal Growth Mechanisms , Plymouth, New Hampshire: poster presentation on migration enhanced epitaxy of CuInSe ₂ on GaAs.

INVITED LECTURES

07/20/21	48th IEEE Photovoltaic Specialists Conference, Tutorial PM5: "Introduction to the Challenges and Opportunities of Thin Film Photovoltaic Manufacturing: Translating Science Into the New Energy Economy"
----------	--

07/13/15	International School for Materials for Energy and Sustainability IV (ISMES IV), Colorado School of Mines, "Materials Challenges for Photovoltaics"
05/24/14	Brookhaven National Laboratory , "Application of X-Ray Characterization of <i>In-Situ</i> Growth at NSLS-II to Relevant Manufacturing Process Optimization Issues"
04/24/13	EE379, University of Texas , "CIGS Intrinsic Defect Thermochemistry: Processing and Semiconductor Device Physics Ramifications"
04/11/13	Solar Seminar Series, Purdue University , West Lafayette, Indiana: "High-Rate Processing and Advanced Emitter Structures for CIGS PV Module Manufacturing"
10/12/12	Materials Science, Engineering, and Commercialization Program, Texas State University , San Marcos, Texas: "High-Rate Processing and Advanced Emitter Structures for CIGS PV Module Manufacturing"
09/11/12	Innovation, Growth, and Conflicting National Interests: Analyzing the Evolution of the Global Solar Industry , LBJ School of Public Affairs, Austin, Texas: "Basics of Solar Power Generation Technologies"
07/20/12	Ettore Majorana International School of Solid State Physics, Materials for Renewable Energy , Erice, Sicily: " Thin Film Photovoltaics: CIGS & CZTS "
10/19/10	LBJ School of Public Affairs , Austin, Texas: "Future of Solar PV and Sustainability in the Built Environment"
05/30/10	Ettore Majorana International School of Solid State Physics, Materials for Renewable Energy , Erice, Sicily: " Thin Film Photovoltaics "

U.S. PATENTS (EXCLUDING INTERNATIONAL EXTENSIONS)

12,509,769 B1	Remote Reactant Reservoirs for Codeposition with Variable Melt Area Evaporant Flux Control
12,435,414 B1	Remote Reactant Reservoirs for Codeposition with Variable Melt Area Evaporant Flux Control
12,392,036 B1:	Inline Codeposition Modular Multi-Flux Evaporation Source with Integrated Reactive Vapor Manifold
12,317,634 B1:	Photoelectrochemical process intensification for sustainable photovoltaics manufacturing
8,647,533:	Compositions including controlled segregated phase domain structure with segregated phase domain array
8,084,685:	Apparatus for making controlled segregated phase domain structures
8,034,317:	Assemblies of anisotropic nanoparticles
8,021,641:	Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom
7,939,048:	Assemblies of anisotropic nanoparticles
7,767,904:	Compositions Including Controlled Segregated Phase Domain Structures
7,163,608:	Apparatus for the Synthesis of Layers, Coatings or Films (continuation)]
7,148,123:	Synthesis of Layers, Coatings or Films Using Collection Layer
6,881,647:	Synthesis of layers, coatings or films using templates
6,797,874:	Layers, coatings or films synthesized using precursor layer exerted pressure containment

6,787,012:	Apparatus for the synthesis of layers coatings, or films
6,736,986:	Chemical synthesis of layers, coatings or films using surfactants
6,720,239:	Synthesis of layers, coatings or films using precursor layer exerted pressure containment
6,593,213:	Synthesis of layers coatings, or films using electrostatic fields
6,559,372:	Photovoltaic devices and compositions for use therein
6,500,733:	Synthesis of layers, coatings or films using precursor layer exerted pressure containment
5,261,969:	Monolithic voltage-matched tandem photovoltaic cell and method for making same
5,021,099:	Solar cell interconnection and packaging using tape carrier
4,867,801:	Triple-junction heteroepitaxial AlGa/CuInSe ₂ tandem solar cell and method of manufacture
4,795,501:	Single crystal, heteroepitaxial, GaAlAs/CuInSe ₂ tandem solar cell and method of manufacture
4,680,422:	Two-terminal, thin film, tandem solar cells
4,322,571:	Solar cells and methods for manufacture thereof
4,320,250:	Electrodes for concentrator solar cells, and methods for manufacture thereof

RESEARCH CONTRACTS AND GRANTS

05/95-12/98	T.J. Anderson and B.J. Stanbery, "Processing of CuInSe ₂ -Based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses," University of Florida, Contract Final Technical Report NREL/SR-520-30391 . Prepared under NREL subcontract XAF-5-14142-10
05/93-05/94	B.J. Stanbery, " New Plasma Source of Hydrides for Epitaxial Growth ," Boeing Defense & Space Group, 1993. NREL subcontract XM-1-19142-8.
05/91-05/93	W.S. Chen, J. M. Stewart, R.A. Mickelsen, W.E. Devaney, and B.J. Stanbery, "Research on Polycrystalline Thin Film CuGaInSe ₂ Solar Cells," Boeing Defense and Space Group, Contract Final Technical Report NREL/TP-413-5835 , September 1993. Prepared under NREL subcontract ZH-1-19019-6.
01/91-04/91	B.J. Stanbery, "Manufacturing Technology Development for CuInGaSe ₂ Solar Cell Modules," Boeing Aerospace & Electronics, Contract Final Technical Report NREL/TP-214-4604, 1991 . Prepared under Solar Energy Research Institute Subcontract XC-1-10057-14.

COMPUTER SKILLS

Operating Systems: Mac OS X, Windows, Linux

Programming Languages: C++, Basic, LabView

Mathematical and Data Analysis: Mathematica, SAS JMP

Information Systems: MS Office 365, MS Teams, MS Project, SharePoint

PERSONAL

U.S. citizen, born in Nacogdoches, Texas to the family of a U.S. Army officer and attended twelve different elementary schools in three countries and seven states. Took all required undergraduate upper-level courses for bachelor's degrees in mathematics, physics, government, psychology, sociology, and economics at UT and UNC. Enjoy hiking, cycling, sailing, swimming, diving, cooking, dining, wine, music, and art. Fond of studying philosophy, astronomy, geology, and human history.

REFERENCES

Available upon request