ENERGY: WHAT IS IT?

ENERGY

The ability to do work

Cannot be created or destroyed, can take different forms

Common Forms of Energy:

Electricity

Light

Heat

Sound

How does energy change form?

All forms of energy need to be considered when we evaluate our *energy systems*

CLASSIFYING ENERGY:

1. POTENTIAL ENERGY

The energy stored within something

batteries (chemical)

nuclear

hydropower (gravitational)

CLASSIFYING ENERGY:

2. KINETIC ENERGY
The energy of something in motion

heat (movement of atoms)

light & xrays (radiant energy, moves in waves)

lightning & electricity (movement of electrons)

CLEAN ENERGY: A QUICK GUIDE

CLEAN ENERGY

Renewable, zero-emission energy.

Common renewable, lowemission energy sources:

solar wind biomass hydro geothermal

"ZERO-EMISSION" VS. FOSSIL FUELS

Energy-related emission primarily from fossil fuels (oil, coal, gas)

carbon dioxide from fossil fuels accounted for 75% of UW human-caused greenhouse gas emission in 2018

U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018, April 2020.

CLEAN ENERGY

Energy saved through energy efficiency.

Energy efficiency allows smaller amounts of energy to complete the same processes.

- conservation efforts
- new technology
- new manufacturing processes

SOLAR ENERGY OVERVIEW

WHAT IS SOLAR ENERGY?

- 1. electrical energy produced from sunlight
- 2. enabled by the photovoltaic effect

Sunlight

Energy

Electrical Energy: the flow of electrical charge (e.g. electron flow)

The Photovoltaic Effect:

- 1. material absorbs *light*, generating energized electrons (e-)
 - 2. the energized electrons move, creating *electrical energy*

ADVANTAGES

- a form of renewable, carbon-free energy
- sunlight is abundant everywhere
- advancing technology enables broader use and more affordable prices

LIMITATIONS

- doesn't work when the sun isn't out
 - energy storage is expensive!
- producing solar panels takes a lot of energy
- lifespan: disposal and recycling necessary when panels get old
- won't work at every site depending on trees, buildings, angle, etc.

MORE INFO + SOURCES

- (1) www.energy.gov/eere/solar/solarenergy-technologies-office
- (2) cleanenergywiki.org
- (3) www.nrel.gov/solar/index.html

ENERGY STORAGE OVERVIEW

CLEAN ENERGY + ENERGY STORAGE

Renewable energy generation is highly variable:

e.g. solar energy can only be generated during the day

To rely on renewable energy sources, we need a way to store energy for future use (e.g. nighttime)

WHAT IS ENERGY STORAGE?

Energy set aside for use at some future point in time

Energy Storage: a stockpile of energy for future use

CURRENT METHODS:

- pumped hydro
 - 99% of global energy storage
- thermal storage
- battery storage
 - conventional household batteries, and advanced new technology
- & many others!

CONSIDERATIONS:

 different types of storage for different needs!

- size and scope of storage
- portability (e.g. for electric vehicles)
- energy density
- power & efficiency
- cost
- safety

MORE INFO + SOURCES

- (1) www.eesi.org/papers/view/energystorage-2019
- (2) cleanenergywiki.org/index.php?
- title=Storage_Basics
- (3) www.energy.gov/oe/energy-storage
- (4) www.sandia.gov/ess-ssl/global-
- energy-storage-database-home/

ENERGY SYSTEMS OVERVIEW

THE GRID

- the system that delivers electric power to houses & businesses
- (1) generation power plants, solar and wind farms, etc.
- (2) transmission carries power from generation site
- (3) distribution power goes to consumers for use

THE TRADITIONAL GRID

stability:

electricity demand must meet electricty supply - if it doesn't blackouts can occur

generation:

power is generated at remote power plants and transmitted to users

THE GRID + SOLAR ENERGY: PROBLEMS

(1) supply/demand balance: solar energy production is variable and unpredictable, causing unstablility in the grid

THE GRID + SOLAR ENERGY: PROBLEMS

(2) voltage control: traditional generation and transmission goes from a power plant to consumers - allows control over ensuring voltage is in an acceptable range with at-home solar cells, the power is produced at the consumer's site without the ability to control the

voltage.

THE GRID + SOLAR ENERGY: PROBLEMS

- (3) line overloads:

 any given power line can only carry so

 much power

 since solar farms can produce a lot of
- since solar farms can produce a lot of energy at once, they can overload the power lines

MORE INFO + SOURCES

(1) www.enbridge.com/energy-matters/energy-school/grid-101(2) greeningthegrid.org/quick-reads(3) cleanenergywiki.org/index.php?title=Grid_Integration_of_Renewables