Structural Characterization of Inorganic Nanoparticles for Clean Energy Applications

Kacper J. Lachowski Nada Naser

Renewable energy adoption is necessary to keep up with energy demands and lower emissions

Renewable energy sources suffer from a supply demand imbalance

Right: Center for Sustainable Systems, University of Michigan. 2020. "U.S. Energy Storage Factsheet." Pub. No. CSS15-17.

Surplus energy generated by clean sources can be stored as chemical energy in the form of hydrogen gas (H₂)

Water splitting:

Structured inorganic materials found in clean energy applications

Atomistic Structure Lumen Learning, PV Education, Ethan Miller

Microscale Structure

Macroscale Structure

Materials properties affecting the photocatalysis efficiency

Band gap energy

Area to volume ratio

Commodity uses of TiO₂ (titania)

Others e.g. photocatalysis

U.S. Geological Survey, Mineral Commodity Summaries, January 2020

Titania polymorphs

Anatase

Widest band gap,
Favored for NPs < 14 nm

Rutile

Most stable

Brookite

Rare

Structural characterization fundamentals

Absorption Transmission Scattering

Bragg Diffraction

Beam (e.g. light) interacts with matter

Atoms diffract beam leading to constructive and destructive interference

Light scattering and diffraction examples

Light scattering from particles (e.g. lake sediment)

Morpho butterfly structural color

Laser diffracted by hair

General comparison of reciprocal vs. real space structural characterization techniques

Reciprocal Space

Representative of whole sample Ambiguous results

Real Space

Not representative of whole sample Unique results

Transmission electron microscopy (TEM) of titania nanoparticles

Left: HK-phy.org

Top right: K. Pushpavanam, Chem. Commun., 2021

Bottom right: X. Chen, Chem. Rev. 107, 2891-2959, 2007

Small angle scattering and diffraction

Original image

FFT (reciprocal space)

Left: Rigaku, 2020,

Right: Dr. G. Muralidharan, ORNL

Small angle scattering and diffraction

Left: Rigaku, 2020,

Right: Dr. G. Muralidharan, ORNL

Additional Resources: cei.washington.edu pveducation.org quantummadesimple.com