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Introduction to perovskite solar cells: 

In 2017, solar energy comprised 1.8% of the US electric supply with an installed capacity of 47 

GW, which is a massive increase from 2011 when solar energy contributed less than 3 GW [2]. 

This surge in installations was a consequence of a plunge in the cost of solar energy from around 

¢50/KWh to ¢16/KWh in those years. However, solar energy is still far from overtaking fossil fuels 

which generate electricity at just ¢6/KWh[2]. This urged the research community to develop 

cheaper and more efficient photovoltaic technologies, thus leading to the emergence of perovskite 

solar cells. 

Mixed organic-inorganic halide perovskite solar cells, called perovskite solar cells (PSCs) in short, 

have shown a rapid increase in power conversion efficiencies from 14% to 25.2% in just seven 

years [5]. These materials have a common structure described with the formula ABX3, where A is 

a monovalent organic or inorganic cation, B is a divalent inorganic cation with a smaller ionic size 

and X is a monovalent anion. The formula represents a large family of materials that can be made 

with different ions at A, B, and X sites in multiple compositions, thus offering great flexibility in 

tuning the electronic properties as needed. These promising materials demonstrate special 

optoelectronic properties – tunable direct bandgap for use in tandem solar cells, high absorption 

coefficient, and high defect tolerance – all of which helped them gather widespread attention in 

the recent years [4]. PSCs offer good efficiencies with low processing costs, making them ideal for 

cheap power generation. However, one major drawback that held them back is the use of toxic 

lead in these materials [4]. Moreover, poor stabilities of PSCs have been a major hindrance to their 

commercial deployment. Perovskite materials degrade rapidly within minutes when exposed to 

light in oxygen-rich and moist environments. So, researchers working with PSCs must conduct 

degradation experiments under a wide range of thermal, humidity, illumination, and oxygen 

stresses to understand the underlying degradation pathways and mitigate the stability issues 

Figure 1. (a) Schematic of the degradation experiment setup. (b) Flowchart 
explaining the machine-learning-assisted accelerated testing protocol. 



caused by them. Device failure studies, along with material-level analysis are fundamental for a 

comprehensive investigation of perovskite degradation. 

In the Hillhouse group at the University of Washington, we examine the temporal decay of the 

material-level optoelectronic quality in perovskite thin films under different thermal, light, oxygen, 

and humidity stresses through in-situ photoluminescence (PL) and dark field (DF) microscopy, 

photoconductivity (PC), and film transmittance (Tr) measurements (Fig. 1a). Based on trends in 

this data, the possible dominating degrading factors and the lifetime of the film until failure can be 

obtained. Moreover, such a material-level characterization can be used for compositional 

screening of ions in the ABX3 unit cell, to ultimately obtain the optimum material that would be 

stable and photo-efficient over a wide range of ambient conditions. But, some of these 

degradation experiments can go on for days, delaying the results. So, the overarching goal of 

these experiments is to develop an accelerated testing protocol using a machine learning model 

(Fig. 1b) that can predict the lifetime of a perovskite thin film, based on early time PC-PL-Tr 

measurements, sample properties like composition, grain size, etc, and the environmental stress 

factors like temperature, humidity, etc. This requires a vast and diverse dataset for training the 

model and identifying the dominant drivers of degradation. Once the model is trained on a rich 

dataset, it can be used to rapidly determine lifetimes of new perovskite materials over a wide 

range of environmental conditions using only short early-time measurements, instead of waiting 

long periods for the sample to degrade completely. This is important for commercial 

manufacturers to be able to predict the payback times for their perovskite modules using quick 

degradation tests, and hence such models play a crucial role in bringing these promising 

perovskite solar cells into the clean energy market. 

Motivation: 

Stoddard et. al. [1] (Fig. 2) from our group 

demonstrated a simple linear regression model 

trained on MAPbI3 perovskite thin films, that can 

predict their lifetimes using early time diffusion 

length measurements, spatially-averaged pixel 

intensities of PL images and film transmittances. 

The article suggests the use of log (Ld85) which is 

the logarithm of the time it takes for the thin film's 

diffusion length to reach 85% of its initial value as a 

lifetime metric, which was surprisingly well-

correlated with the aforementioned early-time 

features, despite a simple linear regression model 

had been used with a one-dimensional feature 

set. This indicates that more accurate and robust 

machine learning models can be built if more 

information can be leveraged from the PC-PL-Tr 

measurements. Especially, the early time PL 

images contain important spatial information 

which has been overlooked till now by these naïve 

linear regression models. For example, Fig 3 (a)-

(d) shows two of many experiments in which 

although these two separate experiments were 

Figure 2. Linear Regression model used by Stoddard 
et. al. to predict tLd,85 [1] 

Figure 3. 
Photoluminescence 
(PL) images of 
MAPbI3 films taken 
under 25C, 60% 
RH, 8 Suns and air. 
(a) and (b) are 
replicates of 
MAPbI3 under same 
environ- mental 
stresses. (b) and (d) 
are enlarged 
versions of (a) and 
(c) respectively 



conducted on the same material under the same environmental stresses, different sizes of bright 

PL clusters were observed at the beginning of the experiment. The two experiments in Fig 3 (a)-

(d) were done on MAPbI3 samples prepared at different times. This means the spatial 

heterogeneities in PL images could be encoding the differences in the film preparation conditions 

like the smoothness of substrates, the viscosity of inks used for spin coating, glovebox 

environment, etc. These heterogeneous features, which are much larger than the typical MAPbI3 

crystallite sizes (<0.1μm as obtained from XRD) and the grain sizes (<1μm as obtained from 

SEM), were termed ‘super-grains’[3]. Such spatially and temporally resolved image data require 

special deep learning techniques to fully encode the spatial information into a one-dimensional 

feature array which we call the “spatial PL feature array” for subsequent use in a lifetime predictor. 

Goal of the current project: 

The current project aims to develop robust machine learning software tools that can encode the 

spatial-temporal heterogeneities usually observed in the early-time PL images of perovskite thin 

films during environmental degradation. Until now, only spatially-averaged PL image intensities 

have been used as features to predict log (Ld80) due to lack of relevant programming tools to 

encode the spatial information in these images. Hence, this project aims at using the PL images 

in their complete two-dimensional (2D) form as features, using convolutional neural networks, to 

avoid the loss of spatially resolved information.  

Results and Discussion: 

Figure 4. Two proposed routes to incorporate 2D PL images in a machine learning model to predict log (Ld80). Route-
1 involves a traditional convolutional neural network (CNN) which outputs the log (Ld80) with the PL images as the 
feed input. Route-2 involves training an autoencoder (based on the CNN architecture) on the 2D PL image data to 
encode it into a 1D array, which can subsequently be fed into a linear regression model along with other scalar 1D 
features. 



For this, our team, involved in the DIRECT capstone project, proposed two potential routes to 

incorporate the 2D PL features into a predictor machine learning model (Fig. 4). Route-1 uses a 

convolutional neural network (NN) that can receive the 2D PL image data as feed and predict a 

single scalar value of log (Ld80). Route-2 uses an autoencoder to encode the 2D PL image data 

into 1D spatial PL feature arrays, which can later be fed into a ridge linear regression model to 

predict the log (Ld80) value. For all models, the training and testing datasets consisted of a total 

N = 1245 number of degradation experiments, which were split randomly in 80:20 ratio to train 

and test the model respectively. Each experiment contains time series data of diffusion length 

(Ld) measurements, photoluminescence (PL) images and transmittance (Tr) measurements 

performed on FAyMAxCs1-x-yPbI3 samples under varying temperature (T), relative humidity (RH%), 

oxygen concentration (O2%), nitrogen concentration (N2%) and illumination intensity (Nsuns). 

Use of spatial PL features in log (Ld80): Route-1 versus Route-2: 

Each route has its own advantages and disadvantages depending on the size and the type of 

data. For our problem, route-2 has shown optimum results in terms of the test prediction error. 

Route-1 is apparently more vulnerable to overfitting compared to Route-2 and even the prediction 

parity plots (Fig. 5(a) and 5(c)) suggest the same. This is because Route-1 uses a single deep 

NN trained with 83,545 parameters or nodes spread across 9 hidden layers to predict log (Ld80), 

whereas Route-2 involves independent training of the autoencoder and the subsequent linear 

regression models. In the latter case, the autoencoder consists of 12,777 parameters of nodes 

spread across 15 hidden layers, takes in a downscaled feed image, encodes it into a 1D 64x1 

array and attempts to reproduce the original image from it as output. Hence, the ground truths 

and the input data are identical for the autoencoder NNs. Later, the encoded 1D array obtained 

from the trained autoencoder is subsequently used in training the linear regression predictor. 

Thus, only 83 parameters corresponding to the input features fed into the linear regression are 

involved in the prediction of log (Ld80) in Route-2, making it less vulnerable to overfitting 

compared to Route-1. Figure 5(a)-(c) demonstrate how Route-2 performs significantly better than 

Route-1. The parity plots of predicted log (Ld80) versus observed log (Ld80) for Route-2 (Fig. 

5(c)) show a better clustering of data-points along the x=y line compared to that in Route-1 (Fig. 

5(a)). Moreover, the testing mean absolute error (MAE) in Route-2 has dropped to 25.74 % 

compared to 30.23 % in Route-1. With fewer parameters to train, Route-2 is faster to train than 

Route-1 and rapidly converges to low test MAEs even with large batch sizes and fewer iterations. 

A contrastingly low train MAE of 18.11% along with a decreased test MAE also suggest that the 

spatially resolved information on the PL image data is well captured by the Route-2’s autoencoder 

augmented with a ridge regressor, compared to Route-1’s sole deep CNN. 

Validation of Route-2’s feature set containing spatial PL features with one without spatial PL 

features using ridge linear regression  

With Route-2 performing better than Route-1, it has become evident that low-bias modeling using 

linear regressors perform better by avoiding noise-fitting or over-fitting. To further establish Route-

2 as the preferable method, we validated it using another ridge regression model, but without the 

PL spatial features. This is to verify how much improvement can be brought in the traditional linear 

regression models by incorporating spatial PL features obtained from the trained autoencoder. 

Table-1 below gives information about the features used for each linear regression model. 



Table 1. Feature pool composition of the traditional ridge regression and Route-2 algorithms. 

 

Fig 5(c) and Fig 5(d) show the log (Ld80) prediction parity plots for the Route-2 and the traditional 

case respectively. The model with the spatial PL features performed better with an improvement 

in the test MAE by 6.5%. Moreover, the datapoints align quite well along the x=y line in Fig. 5(c) 

compared to Fig. 5(d) indicating a better fit in the Route-2’s model. Although the train MAE is 

contrastingly lower in the Route-2’s model, the associated decrease in the test MAE assures that 

the addition of spatial PL features has not led to overfitting in the model. Fig. 5(e) and Fig 5(f) 

display the coefficient distribution of the top 8 and top 17 features selected by the ridge algorithm 

for the Route-2’s and the traditional model’s feature sets respectively. Fig. 5(e) shows that two 

spatial features obtained from the autoencoder – AE47 and AE63 replace the early time PL 

features seen in Fig. 5(f) as significant features indicating that the spatially resolved information 

in the early time PL images is highly correlated with log (Ld80). 

Conclusion: 

Our project results show that the spatial information in PL images of perovskite thin films can be 

effectively captured using autoencoders, and can be used to predict their lifetimes, the log (Ld80) 

values. This novel way of incorporating 2D PL images into predictor models using sequentially 

training disentangles the high-parametric convolutional methods essential for image-feature 

extraction, from the low-parametric linear predictor models, thus rendering an optimum 

combination of a synergistic low-bias and low-variation model. Although the Route-2’s model 

already shows promising results, it can be further improved by tweaking the convolutional kernel 

parameters, activation function types and the hidden layer density of the CNN framework in the 

autoencoders to derive better performance. Moreover, employing ensemble methods like 

boosting and stacking can also result in improved accuracies.  

S. 

no. 
Features 

Number of features used 

Traditional ridge 

regression 

(No spatial PL 

features) 

Route-2 

Autoencoder + 

Ridge regression 

(including spatial PL 

features) 

1 

A priori features 

(T, RH%, O2%, N2%, Nsuns, MA%, 

Cs%) 

7 7 

2 

Early time measurements 

(Ld, PL and Tr measurements at t = 0, 

5, 10 and 15 min.) 

12 12 

3 
Autoencoder features from time 0 PL 

images. 
0 64 

 Total features 19 83 



 

 

 

 

Figure 5. log (Ld80) prediction results for Route-1, Route-2 and validating traditional ridge regression without spatial 
PL features. (a) The log (Ld80) prediction parity plot for Route-1’s algorithm (spatial PL features included). (b) Train 
and test MAE% evolution with training iteration count in Route-1 CNN’s training. (c) The log (Ld80) prediction parity 
plot for Route-2’s algorithm (spatial PL features included). (d) The log (Ld80) prediction parity plot for the traditional 
ridge linear regression algorithm (no spatial PL features included). (e) Coefficients of the top 8 features selected by the 
ridge regression algorithm in Route-2 corresponding to (c). (f) Coefficients of the top 17 features selected by the ridge 
regression algorithm for the traditional dataset without spatial PL features, corresponding to (d). (g) The legend for 

marker styling in the parity plot to describe the environmental conditions for each datapoint/degradation run. 



Deliverables and intended audience: 

This project is the first step in studying spatially resolved absolute intensity PL images to describe 

degradation in perovskite thin films. Currently, the perovskite research community lacks such 

software tools that can be used in accelerated testing protocols to study thin film degradation. So, 

the intended audience for the project deliverables would be researchers actively working in 

perovskite solar cells. However, the scope of the project can also be extended to other types of 

solar cells by training the models on new data, which we haven’t checked yet. But, the framework 

proposed here to extract spatially resolved information from images can be implemented with any 

image data irrespective of the type of the material used. Thus, this project serves as an example 

to demonstrate how novel data science, image processing and programming tools can be used 

to facilitate traditional in-lab experiement-based research, in any field including clean energy. 

The deliverables of the project are to be an open-source software package on Github that can 

perform the aforementioned analyses on image data provided by the user. Currently, since we 

are bound by a data disclosure agreement imposed by the Department of Energy who are the 

primary funders of the project, the full package will be published only after the end of the grant in 

December 2021. However, a truncated version of the software’s results can be shared as the final 

CEI-PLV if confidentiality of it can be assured. As a part of the DIRECT capstone, this is also 

going to be presented in the eScience Institute Open-house Poster presentation on June 9th 2021. 

We are also planning to publish the results of this project in a relevant clean energy journal in 

neat future. 
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