Building Better Batteries: Moving to 3D

I. What Are Batteries? How do they work?

Lithium-ion batteries power everything from cell phones to electric cars.

Electrons follow ions to create electric current that generates power.

Tries to stay together

II. Inside a Battery

Energy: How many ions can be stored (amount of sand)

Power: How fast ions move (speed of sand)

These are determined by the amount of active material (cathode & anode).

III. Benefits of 3D Batteries

Traditional batteries give you either high energy <u>or</u> high power.

3D batteries can give you **both!**

IV. 3D Batteries at CEI

Source: MakerBot

3D batteries can't be made with current manufacturing technology.

Researchers at CEI are exploring ways to make 3D batteries with additive manufacturing, or 3D printing.

Demo Pieces

Thin Electrode

- Sand goes quickly from orange to blue (high power density)
- Does not hold a lot of sand (low energy density)

Thick Electrode

- Sand goes slowly from orange to blue (low power density)
- Holds a lot of sand (high energy density)

Top View

Side View

3D Electrode

- Sand goes quickly from orange to blue (high power density)
- Holds a lot of sand (high energy density)

