2015 Winter Quarter

Optimal Power Flow for Future Smart Grid

Steven H. Low, Ph.D.

Professor, Computing & Mathematical Sciences and Electrical Engineering Departments, Caltech

We envision a future network with hundreds of millions of active endpoints. These are not merely passive loads as are most endpoints today, but endpoints that may generate, sense, compute, communicate, and actuate. They will create both a severe risk and a tremendous opportunity: an interconnected system of hundreds of millions of distributed energy resources (DERs) introducing rapid, large, and random fluctuations in power supply and demand, voltage and frequency, and our increased capability to coordinate and optimize their operation. We will discuss some of the control challenges in such a network and then focus on a specific problem, the optimal power flow (OPF) problem, as an illustration.

OPF seeks to optimize a certain objective, such as power loss, generation cost or user utility, subject to Kirchhoff’s laws, power balance as well as capacity, stability and contingency constraints on the voltages and power flows. It is a fundamental problem that underlies many power system operations. It is nonconvex and many algorithms have been proposed to solve it approximately. A new approach via convex relaxation of OPF has been developed in the last few years. I will survey the state of the art relaxations based on semidefinite programming, chordal extension, and second-order cone programming in both bus injection model and branch flow model. I will explain the relations among these relaxations, and the various sufficient conditions in the literature that guarantee the exactness of these relaxations.

“Providing clean energy to the inhabitants of our planet is a major challenge to future generations. The University of Washington is to be congratulated for establishing an Institute where faculty and students can work together to tackle the difficult global challenge of energy sustainability.”
– Mildred Dresselhaus, Professor of Physics and Electrical Engineering, Emerita and Institute Professor, Massachusetts Institute of Technology
“Energy competition is opening up in a variety of ways, the push for carbon control will continue, and the rate of technology advancement is exponential. All the things I’ve seen at the CEI are just perfect for the way we see things going in energy. You guys are at the cutting edge. We’re counting on you.”
– Ronald Litzinger, President, Edison Energy